Hadronic contributions to the anomalous magnetic moment of the muon

Tom Blum, ^a Peter Boyle, ^{b,c} Mattia Bruno, ^d Norman Christ, ^e Davide Giusti, ^f Vera Gülpers, ^e Taku Izubuchi, ^{b,g} Luchang Jin, ^{a,g} Andreas Jüttner, ^h Christoph Lehner, ^{f,b*} Aaron S. Meyer, ^b J. Tobias Tsangⁱ (RBC and UKQCD collaborations)

October 1, 2020

Affiliations

- a Physics Department, University of Connecticut, Storrs, CT 06269, USA
- b Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- c Higgs Centre for Theoretical Physics, The University of Edinburgh, EH9 3FD, UK
- d Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
- e Physics Department, Columbia University, NY 10024, USA
- f Universität Regensburg, Fakultät für Physik, 93040 Regensburg, Germany
- g RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
- ^h Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
- ⁱ CP3-Origins and IMADA, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

^{*}christoph.lehner@ur.de

- ▶ Persisting $3-4\sigma$ tension between the standard model theory and BNL measurement for muon g-2 \Rightarrow Possible hint for new physics
- ► FNAL E989 will improve experimental precision of 0.54 ppm by a factor of four in the coming years. First results very likely by the end of this year.
- ► Current experimental uncertainty balanced with theory ⇒ theory uncertainty needs to be improved
- ► Theory uncertainty is dominated by two non-perturbative QCD contributions, the hadronic vacuum polarization (HVP) and the hadronic light-by-light scattering (HLbL) with similar individual uncertainties.

Hadronic vacuum polarization:

Source: Theory Initiative Whitepaper arXiv:2006.04822

Isospin-symmetric limit:

QED corrections:

Strong isospin-breaking corrections:

- Need to calculate at 1-2 per-mille precision to match experimental precision after Fermilab E989. Current status: first results around 1%.
- ► Further error reduction by factor of 10 is a challenging task for the next 5-10 years.
- Many improvements for improved statistical and systematic control have already been developed, e.g., improved bounding method (RBC/UKQCD) for light-quark connected isospin symmetric contribution:

Future:

- Need statistics dominated error budgets!
- ▶ Simulations at finer lattice spacings a with $a^{-1} \approx 5$ GeV desired! See related computational LoI with algorithmic developments to accelrate this.
- Within RBC/UKQCD, simulations are already only at physical pion mass, so no chiral extrapolation needed. High-precision control of QED and SIB effects crucial.
- Combined R-ratio/lattice QCD approaches as proposed by RBC/UKQCD 2018 may play a crucial role to scrutinize and improve the estimates. Euclidean time windows also serve as tools for cross-checks.

Hadronic light-by-light scattering:

First ab-initio result this year (RBC/UKQCD PRL124(2020)132002):

$$a_{\mu}^{\rm HLbL} 10^{10} = 7.87(3.06)_{\rm stat}(1.77)_{\rm sys}$$
 (1)

For this quantity it will suffice to reduce the uncertainty to O(10%) in the next 5-10 years.

Future:

- Our previous result used a finite-volume regulator for the photons, will focus on infinite-volume photons coupled to finite-volume quark correlators.
- ► This removes large power-law finite-volume errors but requires special attention to control statistical uncertainties originating from long-range contributions.
- ► For this we will re-use successful ideas of our HVP projects with regards to full low-mode averaging using a locally coherent Dirac eigenmodes representation.
- ▶ We aim to also calculate the long-distance part of the neutral pion-pole contribution separately to further reduce the statistical noise and finite-volume dependence.
- ► In the current calculation some sub-leading diagrams are only estimated to be small, we will verify this explicitly.
- ▶ We have previously shown that different infinite-volume regulators can be used to reduce systematic uncertainties. We will explore this further.

Summary of precision goals for next 5-10 years:

HVP:
$$1\% \to 0.1\%$$

HLbL:
$$44\% \rightarrow 10\%$$

What is required to succeed? We need continued access to large-scale computing resources in the US and dedicated support for the lattice QCD project.